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Abstract
The non-Hermitian matrix Schrödinger equation obtained by the Bäcklund–
Darboux transformation (BDT) is treated. The potentials, fundamental
solutions and Weyl functions are constructed explicitly. A PT symmetric
reduction of the BDT is introduced and this case is studied in greater detail,
including potentials, fundamental solutions, bound states, the reality of the
discrete spectrum and spontaneous break of the PT symmetry, the sign-
indefinite scalar product, and examples.

PACS numbers: 02.30.Tb, 03.65.Ge, 03.65.Ta, 11.30.Na

1. Introduction

This paper deals with the matrix Schrödinger equation

d2

dx2
y(x, λ) − u(x)y(x, λ) + λy(x, λ) = 0 (−∞ < x < ∞) (1.1)

where u(x) is an h × h locally summable matrix function, and λ is a spectral parameter. The
self-adjoint Schrödinger equation is a classical object of research in physics and mathematics.
The growing interest in the non-Hermitian operators is motivated by theoretical and applied
reasons. One of the most interesting non-self-adjoint cases is the case of the PT symmetric
potential: u(x) = u(−x)∗. The PT symmetric quantum mechanics of Bender and Bötcher [5]
have been actively and variously developed since [5] was published; see [6, 10, 14]. For the
first examples of PT symmetric potentials see, for instance, [7]; interesting recent results and
references can be found in [4, 15–17]. The explicit construction of the bound states or energy
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eigenfunctions, i.e. square summable on R solutions (eigenfunctions) of equation (1.1), is of
essential interest in the theory; see [3, 10, 17] and references therein.

Here we study equation (1.1) using the Bäcklund–Darboux transformation (BDT). BDTs
are widely used in both spectral and integrable nonlinear equation theories; a large amount
of literature and numerous results on BDTs are contained in [1, 8, 11, 21, 22, 33]. Some
interesting applications of the Darboux method to the PT symmetric case can be found in
[10, 23, 32] (see also remark 4.5). The version of the BDT that we apply was initially
developed in [25, 26]; see further references in [28]. Explicit solutions of the direct and
inverse spectral problems and bound states for self-adjoint systems on the semi-axis with the
so-called pseudo-exponential potentials have been studied in [12, 13].

We introduce the PT symmetric reduction of the BDT, we formulate the theorem on the
spectrum of the matrix Schrödinger equation obtained via the BDT, and we construct explicitly
bound states, fundamental solutions and Weyl functions. The classical approach to the BDT
in terms of the operator factorization is closely related to the notion of supersymmetry. In this
way, we develop the study of the interplay of supersymmetry and PT symmetry undertaken
in [17]. The scalar non-Hermitian Schrödinger equation is of special interest and the results
are new even in the scalar case.

In section 2 we adduce some basic results from [28] on the BDT (GBDT in the
terminology of [28]) to make the paper self-contained. Using these results, the expressions
for the eigenfunctions and PT symmetric GBDT reduction are derived. In section 3 we
deal with the explicit formulae for the GBDT transformed Schrödinger equation, which can
be obtained when the initial equation is trivial. Theorem 3.7 gives sufficient conditions,
when λ does not belong to the discrete spectrum of equation (1.1). Finally, section 4
is dedicated to the explicit formulae for the case of the PT symmetric u: potentials,
fundamental solutions, bound states, the reality of the spectrum and the spontaneous break of
the PT symmetry, the sign-indefinite scalar product, and examples. Section 5 contains the
conclusion.

We denote by C the complex plane and by R the real axis.

2. BDT and PT symmetric reduction

We consider an m × m first-order system

w′(x, λ) = G(x, λ)w(x, λ) G(x, λ) = −
r∑

k=0

λkqk(x) (2.1)

where w′ = d
dx

w, and the coefficients qk(x) are m × m locally summable matrix functions.
For simplicity we suppose that G is polynomial in λ and λ does not depend on x, t

(the case of G rationally depending on λ(x, t) was treated in [27]). The function w in
equation (2.1) is an absolutely continuous matrix function; it may be either a fundamental
solution or vector function, in particular. (We normalize the m × m fundamental solution
of equation (2.1) by the initial condition w(0, λ) = Im, where Im is the m × m identity
matrix.) Our version of the BDT (GBDT) is determined by the choice of the five parameter
matrices: three square matrices A1, A2, and S(0) (det S(0) �= 0) of order n, and two
n × m matrices �1(0) and �2(0). These parameter matrices should satisfy the operator
identity

A1S(0) − S(0)A2 = �1(0)�2(0)∗ (2.2)

where R∗ denotes the conjugate transpose for some matrix R (conjugate for scalar). Suppose
that such parameter matrices are fixed. Then we can introduce matrix functions �1(x), �2(x)
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and S(x) with the values �1(0),�2(0) and S(0) at x = 0 as the solutions of the linear
differential equations:

�′
1(x) =

r∑
p=0

A
p

1 �1(x)qp(x) �′
2(x) = −

r∑
p=0

(A∗
2)

p�2(x)qp(x)∗

S ′(x) =
r∑

p=1

p∑
j=1

A
p−j

1 �1(x)qp(x)�2(x)∗Aj−1
2 .

(2.3)

Notice that equations (2.3) are constructed in such a way that the identity

A1S(x) − S(x)A2 = �1(x)�2(x)∗ (2.4)

follows from equations (2.2) and (2.3) for all x in the containing zero connected domain, where
the coefficients qk are defined. (The relation is obtained by the direct differentiation of both
sides of equation (2.4).) Moreover, using equation (2.3) �∗

2 is a ‘generalized eigenfunction’ of
system (2.1) corresponding to the generalized (matrix) eigenvalue A2, and �1 is a ‘generalized
eigenfunction’ of a dual system, corresponding to the matrix eigenvalue A1. Assuming that
det S(x) �≡ 0 we can define a matrix function

wA(x, λ) = Im − �2(x)∗S(x)−1(A1 − λIn)
−1�1(x) (2.5)

where λ �∈ σ(A1) (σ denotes spectrum).

Theorem 2.1 [26, 28]. Suppose that matrix functions w,�1,�2 and S satisfy equations (2.1)–
(2.3). Then, in the points of invertibility of S, the matrix function wA satisfies the system

w′
A(x, λ) = G̃(x, λ)wA(x, λ) − wA(x, λ)G(x, λ) (2.6)

where G̃(x, λ) = −∑r
k=0 λkq̃k(x), and the coefficients q̃k are given by the formulae

q̃k(x) = qk(x) −
r∑

p=k+1

(qp(x)Yp−k−1(x) − Xp−k−1(x)qp(x)

+
p∑

j=k+2

Xp−j (x)qp(x)Yj−k−2(x)) (2.7)

Xk(x) = �2(x)∗S(x)−1Ak
1�1(x) Yk(x) = �2(x)∗Ak

2S(x)−1�1(x). (2.8)

According to theorem 2.1 the multiplication by wA transforms the fundamental solution w

of equation (2.1) into the fundamental solution w̃ = wAw of the system w̃′ = G̃w̃ with the
coefficients q̃k of G̃ given by equation (2.7). This transformation of the fundamental solution
w and coefficients qk is called the GBDT. The matrix function wA is the so-called Darboux
matrix. The representation of the Darboux matrix in the form (2.5) proved useful in the spectral
and bispectral theories. Transfer matrix functions of the form wA = I − C(A − λIn)

−1B are
a well-known tool in system theory. Matrix functions of the form (2.5) with the additional
property (2.4) were introduced by Sakhnovich [30, 31] in the context of his method of operator
identities. If S = I these coincide with the well-known characteristic matrix functions [18].

Under the conditions of theorem 2.1 we also have [28]

(�∗
2S

−1)′(x) = −
r∑

p=0

q̃p(x)�2(x)∗S(x)−1A
p

1 (2.9)

(S−1�1)
′(x) =

r∑
p=0

A
p

2 S(x)−1�1(x)q̃p(x). (2.10)
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According to equation (2.9) multiplication by S−1 transforms the eigenfunction �∗
2

corresponding to the generalized eigenvalue A2 of the initial system into the eigenfunction
�∗

2S
−1 corresponding to the generalized eigenvalue A1 of the transformed system. According

to equation (2.10) multiplication by S−1 also transforms the eigenfunction �1 corresponding to
the generalized eigenvalue A1 of the dual system into the eigenfunction S−1�1 corresponding
to the generalized eigenvalue A2 of the transformed dual system. We can see that the operator
of multiplication by S−1 is some kind of instanton generator in the GBDT.

We now consider system (2.1) and put m = 2h, r = 1,

q1 =
[

0 0
Ih 0

]
q0(x) = −

[
0 Ih

u(x) 0

]
. (2.11)

Solution w of system (2.1), with the coefficients given by equation (2.11), can be written
down in block form: w = [

y
ŷ

]
. Hence we rewrite (2.1) as y ′(x, λ) = ŷ(x, λ), ŷ ′(x, λ) =

−λy(x, λ) + u(x)y(x, λ), i.e. equation (1.1) is fulfilled. So system (2.1) and (2.11) is equivalent
to the Schrödinger equation (1.1). The following proposition is a corollary of theorem 2.1.

Proposition 2.2 [28]. Let a matrix function y(x, λ) satisfy the Schrödinger equation (1.1) and
put

ỹ(x, λ) = [Ih 0]w̃(x, λ) (2.12)

where w̃ is the GBDT of the solution w = [
y

y ′
]

of system (2.1) and (2.11). Then ỹ satisfies the
Schrödinger equation

ỹ ′′(x, λ) − ũ(x)ỹ(x, λ) + λỹ(x, λ) = 0 (2.13)

where

ũ(x) = u(x) − 2X′
012(x) X′

012(x) = X022(x) − X011(x) − X012(x)2 (2.14)

and X0kj are the h × h blocks of the matrix X0 = �∗
2S

−1�1.

Instead of the Schrödinger equation (2.13) we can talk about the Schrödinger operator
L̃ = − d

dx2 + ũ with a properly defined domain.
Now we present �1 and �2 in the block form �1 = [�1 �2] and �2 = [�1 �2], where

�k , �k (k = 1, 2) are the n × h matrix functions. We shall need an auxiliary proposition that
follows from equations (2.9) and (2.10).

Proposition 2.3. Let matrix functions �1,�2, S and ũ be defined by the parameter matrices
and by system (2.1) and (2.11) as in proposition 2.2. Then we have

(�1(x)∗S(x)−1)′′ = −�1(x)∗S(x)−1A1 + ũ(x)�1(x)∗S(x)−1 (2.15)

(S(x)−1�2(x))′′ = −A2S(x)−1�2(x) + S(x)−1�2(x)̃u(x). (2.16)

Proof. For the sake of brevity we sometimes omit the argument x in our calculations. From
equation (2.7) it follows that

q̃1 = q1 q̃0 = q0 + X0q1 − q1X0 =
[

X012 −Ih

−u + X022 − X011 −X012

]
. (2.17)

Now we rewrite equation (2.9) as

(�∗
1 S−1)′ = −X012�

∗
1 S−1 + �∗

2 S−1 (2.18)

(�∗
2 S−1)′ = −�∗

1 S−1A1 + (u + X011 − X022)�
∗
1 S−1 + X012�

∗
2 S−1. (2.19)



Bäcklund–Darboux transformation and PT symmetry 7793

Therefore, by differentiating the left-hand side in equation (2.18) we obtain

(�∗
1 S−1)′′ = −X′

012�
∗
1 S−1 − X012(−X012�

∗
1 S−1 + �∗

2 S−1) − �∗
1 S−1A1

+ (u + X011 − X022)�
∗
1 S−1 + X012�

∗
2 S−1

= −�∗
1 S−1A1 +

(
u + X011 − X022 + X2

012 − X′
012

)
�∗

1 S−1. (2.20)

In view of equation (2.14), equation (2.20) yields equation (2.15). Quite analogously from
equation (2.10) we obtain

(S−1�2)
′ = −S−1�1 − S−1�2X012

(S−1�1)
′ = A2S

−1�2 + S−1�1X012 + S−1�2(−u + X022 − X011)
(2.21)

and equation (2.16) follows from equation (2.21). �

If u is PT symmetric, i.e. u(x) = u(−x)∗, then the coefficients qp have the property:

qp(x) = Jqp(−x)∗J (p = 0, 1) J = J ∗ = J−1 =
[

0 Ih

Ih 0

]
. (2.22)

Suppose that the parameter matrices satisfy additional restrictions:

A1 = A∗
2 =: A S(0) = S(0)∗ �1(0) = i�2(0)J =: �(0). (2.23)

Then the operator identity (2.4) takes the form

AS(0) − S(0)A∗ = i�(0)J�(0)∗. (2.24)

According to equations (2.3), (2.22) and (2.23) we have

(i�2(−x)J )′ = i
1∑

p=0

A
p

1 �2(−x)JJqp(−x)∗J = i
1∑

p=0

A
p

1 �2(−x)Jqp(x).

Therefore, taking into account �1(0) = i�2(0)J , we obtain

�1(x) = i�2(−x)J �1(x) = i�2(−x) �2(x) = i�1(−x). (2.25)

Quite analogously we derive

S(x) = S(−x)∗. (2.26)

From the first relation in equation (2.14) and equations (2.25) and (2.26), it follows that

X012(x) = −X012(−x)∗ ũ(x) = ũ(−x)∗. (2.27)

Proposition 2.4.

(i) Let equalities (2.23) hold and let the parameter matrices A,�(0) and S(0) satisfy
identity (2.24). Suppose that u(x) = u(−x)∗. Then equalities (2.27) are valid, i.e.
ũ given by equalities (2.14) (the GBDT of the potential u) is PT symmetric also.

(ii) Suppose additionally that Af = af (f ∈ C
n) and det S(x) �= 0 (−∞ < x < ∞).

Then the vector functions �1(x)∗S(x)−1f and (S(−x)−1�2(−x))∗f are eigenfunctions
of equation (2.13) (of the operator L = − d2

dx2 + ũ(x)) corresponding to the eigenvalue a.

Proof. The statement (i) was proved above and the statement (ii) about �∗
1 S−1f is immediate

from proposition 2.3. Using equations (2.23) and (2.27) we rewrite equation (2.16) as

((S(−x)−1�2(−x))∗)′′ = −(S(−x)−1�2(−x))∗A1 + ũ(x)(S(−x)−1�2(−x))∗. (2.28)

Now we can see that (S(−x)−1�2(−x))∗f is an eigenfunction also. �
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The problem of the appropriate for the PT symmetric model scalar product is actively
discussed in the literature. A space F of the state vectors for the scalar Schrödinger equation
with a sign-indefinite scalar product and corresponding transition probability amplitude has
been introduced in the interesting paper [16]. Quite analogously we put

(ψ, ψ̃) =
∫ ∞

−∞
ψ̃(−x)∗ψ(x) dx. (2.29)

If ψ and ψ̃ are bound states with different eigenvalues, then this scalar product turns to zero.

Remark 2.5. If the conditions of (i) of proposition 2.4 hold, then the scalar product
(y(x, λ1)f1, y(x, λ2)f2) is given by

(y(x, λ1)f1, y(x, λ2)f2) = (λ∗
2 − λ1)

−1
(

lim
b→∞

f ∗
2 (w̃(−b, λ2)

∗J w̃(b, λ1))f1

− lim
a→−∞ f ∗

2 (w̃(−a, λ2)
∗J w̃(a, λ1))f1

)
(2.30)

where w̃ = wAw, and y is defined by equality (2.12). Indeed, according to equalities (2.25) and
(2.26) we have X011(−x)∗ = −X022(x). Hence, in view of equalities (2.27), equalities (2.17)
yields

J q̃0(x) − q̃0(−x)∗J = 0 λ1Jq1 − λ∗
2q

∗
1 J = (λ1 − λ∗

2)

[
Ih 0
0 0

]
. (2.31)

From equation (2.31) it follows that

d

dx
(w̃(−x, λ2)

∗J w̃(x, λ1)) = (λ∗
2 − λ1)w̃(−x, λ2)

∗
[
Ih 0
0 0

]
w̃(x, λ1). (2.32)

Finally, from equations (2.12), (2.29) and (2.32) we obtain (2.30).

It would be interesting to use [29] to obtain some analogues of the above results in the case of
several variables.

3. Explicit formulae

In this section we consider the case of the trivial initial Schrödinger equation: u = 0. We can
see easily that the matrix function

y(x, λ) = [Ih 0]T (µ) eiµxj (λ = µ2) (3.1)

where

T (µ) =
[

Ih Ih

iµIh −iµIh

]
j =

[
Ih 0
0 −Ih

]
(3.2)

satisfies the Schrödinger equation y ′′(x, λ) + λy(x, λ) = 0 with u = 0. Moreover, we have
y ′(x, λ) = [0 Ih]T (µ) eiµxj , i.e.,[

y(x, λ)

y ′(x, λ)

]
= T (µ) eiµxj . (3.3)

Now we assume that

A1 = ω2
1 A∗

2 = ω2
2. (3.4)

In this case, the GBDT of the solution and potential is constructed explicitly up to matrix
exponents. The first two equations in (2.3) can be rewritten as �′

1 = ω2
1�2, �′

2 = −�1,

� ′
1 = �2, and � ′

2 = −ω2
2�1. We introduce 2n × 2n matrices

�p = i

[
ωp 0
0 −ωp

]
T (ωp) =

[
In In

iωp −iωp

]
(p = 1, 2). (3.5)
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We see that the n × 2h matrix functions �1 = [�1 �2] and �2 = [�1 �2] given by the
equalities [

�2(x)

�1(x)

]
= T (ω1) e−x�1

[
θ1

θ2

] [
�1(x)

�2(x)

]
= T (ω2) ex�2

[
ν1

ν2

]
(3.6)

where θp and νp are n × h constant matrices, satisfy equations (2.3). For q0 and q1 defined by
equalities (2.11), the third equation in (2.3) takes the form

S ′(x) = �2(x)�1(x)∗. (3.7)

From proposition 2.2 follows:

Corollary 3.1. Let matrix functions �1,�2 and S be given by equations (3.6) and (3.7), and
let equation (2.2) hold. Then the matrix function

ỹ(x, λ) = [Ih 0]wA(x, λ)T (µ) eiµxj (3.8)

satisfies the matrix Schrödinger equation (2.13), where

ũ(x) = −2X′
012(x) X0(x) = �2(x)∗S(x)−1�1(x). (3.9)

Proof. In view of equality (3.3), equality (2.12) now takes the form (3.8), and the statement
of the corollary is immediate. �

Definition 3.2. An h × 2h solution v(x, λ) of the matrix Schrödinger equation is called the
fundamental solution if the initial conditions

v(0, λ) = [Ih 0] v′(0, λ) = [0 Ih] (3.10)

are valid.

To construct the fundamental solution, we notice that

T (µ)−1 = i

2µ

[−iµIh −Ih

−iµIh Ih

]
iµT (µ)jT (µ)−1 =

[
0 Ih

−λIh 0

]
= G(λ) (3.11)

where qp that define G are given by equalities (2.11), u = 0. Thus, we have

d

dx
T (µ) eiµxj = G(λ)T (µ) eiµxj . (3.12)

In view of equations (2.6), (2.17) and (3.12) for ỹ given by equation (3.8), we obtain

d̃y

dx
= −[Ih 0](λ̃q1 + q̃0(x))wA(x, λ)T (µ) eiµxj

= [−X012(x) Ih]wA(x, λ)T (µ) eiµxj . (3.13)

According to equations (3.8) and (3.13), the matrix function

v(x, λ) = ỹ(x, λ)T (µ)−1wA(0, λ)−1T0 T0 =
[

Ih 0
X012(0) Ih

]
(3.14)

satisfies equation (3.10), i.e. v is a fundamental solution. From equalities (2.4) and (2.5), it
follows [30] that

wA(x, λ)−1 = Im + �2(x)∗(A2 − λIn)
−1S(x)−1�1(x). (3.15)

Thus the right-hand side of equation (3.14) is defined for λ ∈ C\(σ (A1) ∪ σ(A2) ∪ {0}).
Similar to the scalar self-adjoint case, Weyl–Titchmarsh functions can be introduced

in the matrix and non-self-adjoint cases; see, for instance, [9, 12, 24, 31] and references
therein.
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Definition 3.3. An h × h matrix function ϕ(λ) is called a Weyl function of the Schrödinger
equation (1.1) on (0,∞) and we write ϕ ∈ W+ if the entries of v(x, λ)

[
Ih

ϕ(λ)

]
belong to

L2(0,∞). If these entries belong to L2(−∞, 0) we write ϕ ∈ W−, i.e. ϕ is a Weyl function of
equation (1.1) on (−∞, 0).

We introduce a 2h × 2h matrix function ϒ with the h × h blocks ϒkj by the equality

ϒ(λ) = {ϒkj }2
k,j=1 = T −1

0 wA(0, λ)T (µ). (3.16)

Furthermore, we fix the branch of the square root µ = √
λ and assume that

µ ∈ C+ if λ �∈ [0,∞) µ ∈ [0,∞) if λ ∈ [0,∞) (3.17)

where C+ is the open upper half-plane. According to equalities (3.14) and (3.16) we have

v(x, λ)

[
ϒ11(λ)

ϒ21(λ)

]
= eiµx[Ih 0]wA(x, λ)

[
Ih

iµIh

]
v(x, λ)

[
ϒ12(λ)

ϒ22(λ)

]
= e−iµx[Ih 0]wA(x, λ)

[
Ih

−iµIh

]
.

(3.18)

Using relations (3.17) and (3.18), we can find various sufficient conditions when

ϒ21(λ)ϒ11(λ)−1 ∈ W+ ϒ22(λ)ϒ12(λ)−1 ∈ W−.

Theorem 3.4. Let matrix functions �1,�2, S and ũ be given by equations (3.6), (3.7) and
(3.9). Let equalities (2.2) and (3.4) hold, and suppose additionally that σ(ωp) ∈ R (p = 1, 2),

det S(x) �= 0, and for each ε > 0 the relation

‖S(x)−1‖ < Cε eε|x| (−∞ < x < ∞) (3.19)

is valid. Then, for the Schrödinger equation (2.13) we have ϒ21(λ)ϒ11(λ)−1 ∈ W+,

ϒ22(λ)ϒ12(λ)−1 ∈ W−, where the Weyl functions are considered on C\� and � consists
of [0,∞) and zeros of det ϒ11(λ), det ϒ12(λ).

Proof. From equation (3.6) it follows that if σ(ωp) ∈ R then the entries of �1 and �2

can be presented in the form
∑N

k=1 eiαkxPk(x), where αk ∈ R and Pk are polynomials.
Therefore, using relations (2.5) and (3.19) for any µ ∈ C+ the matrix functions eiµxwA(x, λ)

and e−iµxwA(x, λ) decay exponentially when x tends to +∞ and −∞, respectively. Now,
using equation (3.18) the statement of the theorem is immediate. �

Notice that, in view of equation (3.6) we have

�1(0) = iω1(θ1 − θ2) �2(0) = θ1 + θ2

�1(0) = ν1 + ν2 �2(0) = iω2(ν1 − ν2).
(3.20)

Remark 3.5. According to equation (3.6) if a 2n × 2n matrix s satisfies the operator identity

s�∗
2 − �1s =

[
θ1

θ2

]
[ν∗

1 ν∗
2 ] (3.21)

then the matrix function S(x) of the form

S(x) = P e−x�1s ex�∗
2P ∗ P = [In In] (3.22)

satisfies equation (3.7). Moreover, for P̃ = [In −In] from identity (3.21) it follows that

P̃ (s�∗
2 − �1s)P

∗ = −i(P̃ sP̃
∗
ω∗

2 + ω1PsP ∗) = (θ1 − θ2)(ν1 + ν2)
∗ (3.23)

P(s�∗
2 − �1s)P̃

∗ = −i(P sP ∗ω∗
2 + ω1P̃ sP̃

∗
) = (θ1 + θ2)(ν1 − ν2)

∗. (3.24)
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Finally, using equalities (3.20), (3.23) and (3.24), we derive

ω2
1PsP ∗ − PsP ∗(ω∗

2)
2 = ω1(ω1PsP ∗ + P̃ sP̃

∗
ω∗

2) − (ω1P̃ sP̃
∗

+ PsP ∗ω∗
2)ω

∗
2

= i(ω1(θ1 − θ2)(ν1 + ν2)
∗ − (θ1 + θ2)(ν1 − ν2)

∗ω∗
2)

= �1(0)�2(0)∗. (3.25)

Thus, the matrix function S(x) given by equation (3.22) satisfies equation (2.2) also.

Equality (3.22) defines S more explicitly than equations (2.2) and (3.7), and conditions of
invertibility of S on R can be formulated now in terms of s. In view of equations (3.6) and
(3.22) we have

�2(x) = e−ixω1θ1 + eixω1θ2 �1(x) = eixω2ν1 + e−ixω2ν2

S(x) = [e−ixω1 eixω1 ]s

[
e−ixω∗

2

eixω∗
2

]
.

(3.26)

Consider a simple example.

Example 3.6. For n = 1, equation (3.21) takes the form

−i(ω∗
2 diag{1,−1}s + ω1s diag{1,−1}) =

[
θ1

θ2

] [
ν∗

1 ν∗
2

]
(3.27)

where diag denotes diagonal matrix, and θp and νp are row vectors from C
h. If ω1 �= ±ω∗

2,
then from equation (3.27) we obtain

s = i


θ1ν

∗
1

ω1 + ω∗
2

θ1ν
∗
2

ω∗
2 − ω1

θ2ν
∗
1

ω1 − ω∗
2

− θ2ν
∗
2

ω1 + ω∗
2

 . (3.28)

Let us simplify the conditions further and assume that

ω1 = ω2 = ω ∈ R\0 θ2ν
∗
1 = θ1ν

∗
2 = 0 (θp, νp ∈ C

h) |θ1ν
∗
1 | �= |θ2ν

∗
2 |.

(3.29)

Then we can put s = diag i
2ω

{θ1ν
∗
1 ,−θ2ν

∗
2 }. Hence, using the last relations in formulae (3.26)

and (3.29) we have

S(x) = i

2ω
(e−2ixωθ1ν

∗
1 − e2ixωθ2ν

∗
2 ) det S �= 0 (3.30)

and thus inequality (3.19) holds. Therefore, the conditions of theorem 3.4 are fulfilled. It
easily follows from equations (3.9), (3.26) and (3.30) that

ũ(x) = −8ω2(e−2ixωθ1ν
∗
1 − e2ixωθ2ν

∗
2 )−2(e−2ixωθ1ν

∗
1 + e2ixωθ2ν

∗
2 )(ν∗

1θ2 + ν∗
2θ1)

+ 2(θ1ν
∗
1ν∗

2θ2 + θ2ν
∗
2ν∗

1θ1)). (3.31)

To write down Weyl functions of equations (2.13) and (3.31), we notice that S(0)−1 =
2iω(θ2ν

∗
2 − θ1ν

∗
1 )−1 and put Z1 = 2iω(θ2ν

∗
2 − θ1ν

∗
1 )−1(ν1 + ν2)

∗,

Z2 = 2iω(θ2ν
∗
2 − θ1ν

∗
1 )−1(Z1(θ1 + θ2)(ν1 + ν2)

∗ + iω(ν1 − ν2)
∗).

Then ϒkj defined in equality (3.16) are given by the formulae

ϒ21(λ) = iµIh − Z1(θ1 + θ2) + (ω2 − λ)−1Z2(iµ(θ1 + θ2) + iω(θ1 − θ2))

ϒ11(λ) = Ih − (ω2 − λ)−1Z1(iµ(θ1 + θ2) + iω(θ1 − θ2))

ϒ22(λ) = −iµIh − Z1(θ1 + θ2) − (ω2 − λ)−1Z2(iµ(θ1 + θ2) − iω(θ1 − θ2))

ϒ12(λ) = Ih + (ω2 − λ)−1Z1(iµ(θ1 + θ2) − iω(θ1 − θ2)).



7798 A L Sakhnovich

The expressions for the Weyl functions ϒ21(λ)ϒ11(λ)−1 ∈ W+ and ϒ22(λ)ϒ12(λ)−1 ∈ W−
are now immediate.

In the generic case it is necessary that

f ∈ Im

[
ϒ11(λ)

ϒ21(λ)

]
for v(x, λ)f ∈ L2

h(0,∞) and f ∈ Im

[
ϒ12(λ)

ϒ22(λ)

]
for v(x, λ)f ∈ L2

h(−∞, 0) (Im − image).

Thus, the relation v(x, λ)f ∈ L2
h(−∞,∞) is possible if λ is a point of degeneracy or

singularity of ϒ(λ), i.e. in view of equalities (2.5), (3.15) and (3.16) the set σ(A1) ∪ σ(A2) is
of interest for us.

Theorem 3.7. Let the conditions of corollary 3.1 hold and let the limits L± =
limx→±∞ wA(x, λ) exist (λ �∈ σ(A1) ∪ σ(A2)). Putting

l± = L±

[
Ih

∓iµIh

]
(3.32)

suppose additionally that det l± �= 0. Then there are no bound states corresponding to λ, i.e.
λ is not an eigenvalue of the Schrödinger equation (2.13).

Proof. Consider v(x, λ)f and put[
g1

g2

]
= ϒ(λ)−1f (3.33)

where ϒ(λ) (λ �= 0) is given by equation (3.16) and ϒ(0) = T −1
0 wA(0, 0). Let us treat first

the case λ �= 0. Using equations (3.18) and (3.33) we obtain

v(x, λ)f = eiµx(g̃1 + o(1)) + e−iµx(l+g2 + o(1)) (g̃1 ∈ C
h) when x → ∞ (3.34)

v(x, λ)f = eiµx(l−g1 + o(1)) + e−iµx(g̃2 + o(1)) (g̃2 ∈ C
h) when x → −∞.

(3.35)

Recall that �µ � 0. Using formulae (3.34) and (3.35) it is clear that the relation
v(x, λ)f ∈ L2

h(−∞,∞) yields l+g2 = l−g1 = 0. Taking into account that det l± �= 0
we obtain g1 = g2 = 0, i.e. f = 0. As v is the fundamental solution, the statement of the
theorem is proven for λ �= 0. Consider the case λ = 0 separately. Similar to equation (3.14)
we can show that the fundamental solution v(x, 0) is given by

v(x, 0) = [Ih 0]wA(x, 0)

[
Ih xIh

0 Ih

]
wA(0, 0)−1T0. (3.36)

Using equations (3.33) and (3.36) we now obtain

v(x, 0)f = x(l+ + o(1))g2 + (̃l + o(1))g2 + (l+ + o(1))g1 (3.37)

(̃l = L+[0 Ih]∗), when x → ∞. Using equality (3.37) the relation v(x, λ)f ∈ L2
h(−∞,∞)

yields g1 = g2 = 0 again. �
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4. State vectors in the PT symmetric case

In this section we obtain explicit formulae for the PT symmetric case. For this purpose we
assume that u = 0, A = ω2 (ω = ω1 = ω2), and conditions of proposition 2.4 hold. Recall
that u and ũ are m×m matrix functions, ω is an n×n matrix, and m and n are fixed independent
positive integers. Then, taking into account equalities (2.25), we rewrite equalities (3.9) in the
form

ũ(x) = ũ(−x)∗ = −2X′
012(x) X012(x) = i�2(−x)∗S(x)−1�2(x) (4.1)

where according to the first relation in equations (3.6) and (3.7) we have

S ′(x) = i�2(x)�2(−x)∗ �2(x) = (e−ixωθ1 + eixωθ2). (4.2)

In view of equalities (2.25), equality (2.5) is rewritten now as

wA(x, λ) = I2h − iJ�(−x)∗S(x)−1(ω2 − λIn)
−1�(x) (4.3)

where

�(x) = �1(x) = [�1(x) �2(x)] �1(x) = iω(e−ixωθ1 − eixωθ2). (4.4)

From propositions 2.3 and 2.4 and corollary 3.1 follows:

Corollary 4.1.

(i) Let n × n parameter matrices ω and S(0) = S(0)∗ and n × h parameter matrices θ1 and
θ2 satisfy the identity

ω2S(0) − S(0)(ω∗)2 = i�(0)J�(0)∗ �(0) = [iω(θ1 − θ2) (θ1 + θ2)]. (4.5)

Then the fundamental solution v of the Schrödinger equation (2.13) with ũ defined
by equalities (4.1) is given by equalities (3.14) and (3.8), where wA is constructed in
relations (4.2)–(4.4).

(ii) Suppose additionally that (θ∗
1 e−ixω∗

+ θ∗
2 eixω∗

)S(x)−1 ∈ L2
h×n(−∞,∞). Then the

eigenvectors of ω2 generate bound states of equation (2.13) with the same eigenvalues,
i.e. from ω2fa = afa it follows that

ψa(x) = �2(−x)∗S(x)−1fa = (θ∗
1 e−ixω∗

+ θ∗
2 eixω∗

)S(x)−1fa (4.6)

is a bound state of (2.13) with the eigenvalue a.

Thus, the real eigenvalues of ω2 are of interest and the PT symmetry is ‘spontaneously
broken’ (there exist unstable bound states) if σ(ω2) �⊂ R. If h = 1, i.e. ũ is a scalar function
and we consider a scalar Schrödinger equation under the conditions of corollary 4.1, then
ψa(−x)∗ = f ∗

a S(x)−1�2(x) is a bound state with the eigenvalue a∗.

Remark 4.2. If the conditions of (i) of corollary 4.1 are fulfilled and the limit � =
limx→∞ S(x)−1 exists, then the scalar product of the eigenfunctions ψ = �2(−x)∗S(x)−1f

and ψ̃ = �2(−x)∗S(x)−1f̃ from the image of �2(−x)∗S(x)−1 is given by

(ψ, ψ̃) = f̃ ∗Kf K = i(� − �∗). (4.7)

Indeed, using equality (2.26) and the first relation in formula (4.2) we have

ψ̃(−x)∗ψ(x) = f̃ ∗S(x)−1�2(x)�2(−x)∗S(x)−1f = if̃ ∗(S(x)−1)′f. (4.8)

Equality (4.7) follows from formulae (2.29) and (4.8).
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Example 4.3. Putting n = 1, ω = ξ + iη (ξ, η ∈ R), and using equalities (4.4), we rewrite
identity (4.5) as

ξηS(0) = 1
2 (iξ(θ1θ

∗
2 − θ2θ

∗
1 ) − η(θ1θ

∗
1 − θ2θ

∗
2 )). (4.9)

As n = 1, function S is a scalar. From equation (4.2) we obtain

S ′(x) = i(e−2iξxθ1θ
∗
1 + e2iξxθ2θ

∗
2 + e2ηxθ1θ

∗
2 + e−2ηxθ2θ

∗
1 ). (4.10)

According to equations (4.9) and (4.10) we have

S(x) = i

2η
(e2ηxθ1θ

∗
2 − e−2ηxθ2θ

∗
1 ) − 1

2ξ
(e−2iξxθ1θ

∗
1 − e2iξxθ2θ

∗
2 ) if ξη �= 0 (4.11)

S(x) = i

2η
(e2ηxθ1θ

∗
2 − e−2ηxθ2θ

∗
1 ) + ix(θ1θ

∗
1 + θ2θ

∗
2 ) + c (4.12)

if ξ = 0, η �= 0, θ1θ
∗
1 = θ2θ

∗
2 ;

S(x) = − 1

2ξ
(e−2iξxθ1θ

∗
1 − e2iξxθ2θ

∗
2 ) + ix(θ1θ

∗
2 + θ2θ

∗
1 ) + c (4.13)

if ξ �= 0, η = 0, θ1θ
∗
2 ∈ R. From (4.1) and relation

�2(−x)∗�2(x) = (e−2iξxθ∗
1 θ1 + e2iξxθ∗

2 θ2 + e−2ηxθ∗
1 θ2 + e2ηxθ∗

2 θ1). (4.14)

It follows that

ũ(x) = 4S(x)−1(−ξ(e−2iξxθ∗
1 θ1 − e2iξxθ∗

2 θ2) + iη(e−2ηxθ∗
1 θ2 − e2ηxθ∗

2 θ1))

+ 2iS(x)−2S ′(x)(e−2iξxθ∗
1 θ1 + e2iξxθ∗

2 θ2 + e−2ηxθ∗
1 θ2 + e2ηxθ∗

2 θ1). (4.15)

If θ1θ
∗
2 �= 0 and det S(x) �= 0, then the conditions of corollary 4.1 are fulfilled in the cases of

equations (4.11)–(4.13). Hence the PT symmetry is spontaneously broken if ξη �= 0.

Remark 4.4. When ξη = 0, ω �= 0, θ1θ
∗
2 �= 0, and det S(x) �= 0 in the examples (4.12) and

(4.13), then the conditions of theorem 3.7 are satisfied. Indeed, using equalities (4.3), (4.4),
(4.12) and (4.13) the existence of the limits L± for λ �= ω2 is immediate. If ξ = 0, η �= 0, and
θ1θ

∗
1 = θ2θ

∗
2 we can put without loss of generality η > 0 to obtain easily

l+ = Ih − 2iη((µ + iη)θ1θ
∗
2 )−1θ∗

2 θ1 l− = Ih − 2iη((µ + iη)θ2θ
∗
1 )−1θ∗

1 θ2

and

l−1
+ = Ih + 2iη((µ − iη)θ1θ

∗
2 )−1θ∗

2 θ1 l−1
− = Ih + 2iη((µ − iη)θ2θ

∗
1 )−1θ∗

1 θ2

i.e. l± and l−1
± are well defined for λ �= −η2. In the case ξ �= 0, η = 0, θ1θ

∗
2 ∈ R we have

l+ = l− = Ih and the conditions of theorem 3.7 are also satisfied. Therefore, the discrete
spectrum of the Schrödinger equation with PT symmetric ũ given by equality (4.15) (ξη = 0)

is the simplest possible; it is concentrated in a real point ω2. From (ii) of corollary 3.1, the
vector function ψ(x) = (e−ηxθ∗

1 + eηxθ∗
2 )S(x)−1 is a bound state with the real eigenvalue −η2

in the example (4.12), and the vector function ψ(x) = (e−iξxθ∗
1 + eiξxθ∗

2 )S(x)−1 is a bound
state with the real eigenvalue ξ 2 in the example (4.13). If h = 1 (scalar Schrödinger equation),
then

√
θ1θ2ψ and θ1ψ are PT symmetric bound states in the examples (4.12) and (4.13),

respectively.

When n = h = 1, ξ = 0, η = 1
2 , θ2 = iθ1, and c = 0, we obtain S(x) = 2|θ1|2(cosh x + ix).

Hence, using equality (4.15) we have

ũ(x) = 2

((
sinh x + i

cosh x + ix

)2

− cosh x

cosh x + ix

)
. (4.16)
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The bound state ψ has a simple form: ψ = e− x
2 −i e

x
2

cosh x+ix .

Remark 4.5. The potential given by equality (4.16) looks rather close to the potentials
−V1(cosh x)−2 − iV2(cosh x)−1 tanh x thoroughly studied in [2, 10, 32], but from the spectral
point of view the corresponding Schrödinger equations are essentially different.

5. Conclusion

Thus, the BDT proves a useful tool to study the non-Hermitian and PT symmetric effects,
which provides explicit formulae for the Schrödinger equation with various multiparameter
potentials. The simplest cases, from the spectral point of view, are produced and the expression
for the sign-indefinite scalar product is simplified, in particular. The reality of the discrete
spectrum of the Schrödinger equation proves connected with the reality of the spectrum
of the ‘generalized’ matrix eigenvalue A = ω2 of the BDT. In this way, some interesting
interconnections with the theory of the slowly decaying solutions of the integrable nonlinear
equations—positons and harmonic breathers (see [20] and references therein)—are possible.
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